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Abstract

Cryptosporidiosis, giardiasis, and microsporidiosis are important waterborne diseases. In the 

standard for wastewater treatment plant (WWTP) effluents in China and other countries, the fecal 

coliform count is the only microbial indicator, raising concerns about the potential for pathogen 

transmission through WWTP effluent reuse. In this study, we collected 50 effluent samples (30 L/

sample) from three municipal WWTPs in Shanghai, China, and analyzed for Cryptosporidium 
spp., Giardia duodenalis and Enterocytozoon bieneusi by microscopy and/or polymerase chain 

reaction (PCR). Moreover, propidium monoazide (PMA)-PCR was used to assess the viability of 

oocysts/cysts. The microscopy and PCR-positive rates for Cryptosporidium spp. were 62% and 

40%, respectively. The occurrence rates of G. duodenalis were 96% by microscopy and 92–100% 

by PCR analysis of three genetic loci. Furthermore, E. bieneusi was detected in 70% (35/50) of 

samples by PCR. Altogether, 10 Cryptosporidium species or genotypes, two G. duodenalis 
genotypes, and 11 E. bieneusi genotypes were found, most of which were human-pathogenic. The 

chlorine dioxide disinfection employed in WWTP1 and WWTP3 failed to inactivate the residual 

pathogens; 93% of the samples from WWTP1 and 83% from WWTP3 did not meet the national 
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standard on fecal coliform levels. Thus, urban WWTP effluents often contain residual waterborne 

human pathogens.
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INTRODUCTION

Cryptosporidiosis and giardiasis are two major waterborne diseases worldwide. 

Cryptosporidiosis, caused by Cryptosporidium spp., is responsible for self-limited diarrhea 

in immunocompetent persons and chronic diarrhea, cholangitis, and other severe 

complications in immunocompromised persons (Chalmers & Davies 2010). Giardiasis, 

caused by Giardia duodenalis, mainly occurs in children and causes diarrhea (Cacciò & 

Sprong 2011). Hundreds of waterborne outbreaks of cryptosporidiosis and giardiasis have 

been reported, mostly in industrialized nations (Baldursson & Karanis 2011). As a result, 

Cryptosporidium spp. and G. duodenalis are two of the most important pathogens in 

drinking water standards of many developed nations including China. Microsporidiosis is 

also a significant cause of diarrhea in children and AIDS patients (Didier & Weiss 2011). 

Although its epidemiology is less clear, spores of microsporidia have been found in drinking 

water sources (Dowd et al. 1998; Fournier et al. 2000).

Among more than 70 Cryptosporidium species/genotypes identified, C. parvum and C. 
hominis are responsible for most human infections (Ryan et al. 2014). Similarly, among the 

at least eight genotypes of G. duodenalis (assemblages A–H), only assemblages A and B are 

major human pathogens (Feng & Xiao 2011). The most common species that causes human 

microsporidiosis is Enterocytozoon bieneusi (Didier & Weiss 2011), which consists of more 

than 200 genotypes in at least eight groups, with humans mainly infected by genotypes in 

Group 1 (Karim et al. 2014).

United States Environmental Protection Agency Method 1623 is the standard method for the 

detection and quantitation of Cryptosporidium oocysts and Giardia cysts in water samples 

(Weintraub 2006). Currently, there are no validated methods for the detection of E. bieneusi 
spores in water. Like other microcopy-based methods, Method 1623 cannot diagnose 

Cryptosporidium spp. and Giardia spp. at the species or genotype level, and thus cannot 

differentiate human pathogens from animal pathogens. In contrast, molecular biological 

techniques such as polymerase chain reaction (PCR) and sequence analysis not only allow 

sensitive detection of multiple pathogens including E. bieneusi but also may facilitate the 

assessment of sources and human-infective potential of pathogens in water (Kothavade 

2012). In addition, the viability of Cryptosporidium oocysts and Giardia cysts can be 

assessed through the treatment of samples with propidium monoazide (PMA) prior to PCR 

analysis, as the incorporation of PMA into DNA in damaged oocysts or cysts prevents PCR 

amplification of genetic targets (Brescia et al. 2009; Alonso et al. 2014).

Effluents of wastewater treatment plants (WWTPs) have been increasingly used for 

irrigation, recreational impoundments, and wetland reconstruction (Hachich et al. 2013). 
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However, the existence of residual waterborne pathogens is a potential problem in 

wastewater reuse. For example, the use of treated effluents for crop cultivation and 

recreation is regarded as a potential risk to human health (Carr etal. 2004). Moreover, the 

current discharge standard of pollutants from municipal WWTPs in China uses the fecal 

coliform count as a microbiological indictor and does not have any specifications for 

pathogens such as Cryptosporidium spp. and G. duodenalis. Currently, the permitted 

concentration of fecal coliforms in China is 100 MPN/100 mL for Level 1-A water 

discharge (reclaimed use for landscape irrigation and small river and lake recharge), and 

1,000 MPN/100 mL for Level 1-B (fishery, mariculture, swimming, etc.) and Level 2 water 

discharge (recreational water without direct body contact, agricultural irrigation, industrial 

usage, coastal tourist areas, etc.) (SEPA & AQSIQ 2002).

In this study, we examined the occurrence and human-infective potential of Cryptosporidium 
spp., G. duodenalis and E. bieneusi in effluents from three municipal WWTPs in Shanghai 

by microscopy, PCR, and PMA-PCR. Data from the study showed a common occurrence of 

human-pathogenic Cryptosporidium, G. duodenalis, and E. bieneusi genotypes in WWTP 

effluents, and no consistent correlation between fecal coliform counts and the occurrence of 

waterborne pathogens.

MATERIALS AND METHODS

Study sites

The effluents from three municipal WWTPs in Shanghai were sampled in this study. 

WWTP1 lies in the suburbs, utilizing the suspended carrier inverted anaerobic-anoxic-oxic 

(AAO) process after the removal of large particles by screening and vortex-type grit 

chambers. The treated wastewater goes through chlorine dioxide (ClO2) disinfection (the 

designed dosage was 5 ppm) before discharge. The effluent flows into a canal that is 

bordered by farmlands. WWTP2 is in the city; the wastewater first traverses through screens 

to remove large particles, and then flows into an aerated grit chamber and through a primary 

clarifier. It employs the inverted AAO process as the biological treatment and ultraviolet 

(UV) (TrojanUV3000Plus system, London, Ontario) for disinfection. The high output, low 

pressure amalgam lamps in the UV system are automatically dimmed when water flow 

drops or when the water quality changes, with UV doses varying mostly between 20 and 50 

mWs/cm2. The effluent is discharged into a small river, which runs through a popular 

recreational park. WWTP3 is located near the coast and uses screening and vortex-type grit 

chambers to remove large particles in wastewater before the wastewater enters an integrated 

hydrolyzing pond. It uses the AAO process for biological treatment and chlorine dioxide for 

disinfection (the operational dosage was 8 ppm). The treated wastewater discharges into the 

sea and the seaside has become a tourist attraction, where visitors enjoy the beach and 

consume locally-harvested seafood. The three WWTPs studied use the Level 1-B or Level 2 

discharge standard, with the limit of the fecal coliform count as 1,000 MPN/100 mL.

Sample collection and processing

A total of 50 grab samples (30 L per sample) of treated wastewater were collected during 

September 2014 to March 2015 from the three WWTPs, including 16 samples from 
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WWTP1, 18 from WWTP2, and 16 from WWTP3. Four samples were collected from one 

WWTP at a time with a 10-min interval between each sample. Only one WWTP was visited 

each week, with the three WWTPs alternated among each other. Samples were transported 

to the laboratory in 10 L plastic containers and processed immediately upon arrival. The 

calcium carbonate flocculation (CCF) method was used for the concentration of pathogens 

in water samples as previously described (Vesey et al. 1993). The protists suspended in 

water were aggregated into the sediment after CCF. Half of the sediment (about 0.5 mL) was 

used in immunomagnetic separation (IMS) and immunofluorescence microscopy (IFA) of 

Cryptosporidium oocysts and Giardia cysts. The remaining part was divided into two: one 

was washed twice using phosphate buffered saline (PBS) by centrifugation and stored at 

−80 °C until DNA extraction, and the other received PMA treatment prior to DNA 

extraction.

Determination of fecal coliforms

For 38 of the 50 water samples, 10 mL of the mixed effluent was taken immediately for the 

determination of fecal coliforms upon their arrival in the laboratory. The Colilert Quanti-

Tray/2000® (Idexx Laboratories, ME) was used in the enumeration of fecal coliforms with 

incubation at 44.5 °C and a dilution ratio of 1:100, as described recently (Staley et al. 2016).

IMS-IFA

Dynabeads® GC-combo kit (Idexx Laboratories), Easy-Stain™ (BTF, Australia), and 4′,6-

diamidino-2-phenylindole (DAPI) were used for the IMS, IFA, and nuclear counter-staining 

of Cryptosporidium oocysts and Giardia cysts, respectively, following procedures of Method 

1623 (Office of Water 2005). The stained oocysts and cysts with internal structures were 

counted under a fluorescence microscope equipped with the required epifluorescence filters.

PMA staining

The PMA (Biotium, USA) stock solution (50 mM) and working solution (150 μM) were 

prepared and stored as previously described (Brescia et al. 2009). Samples were incubated in 

the dark with an equal volume of PMA working solution and continuously stirred for 5 min. 

They were then placed on ice and exposed to an 800-W halogen light source 20 cm away. 

The total exposure time was 3 min, with a 1-min stirring after every 30-sec exposure. 

Treated samples were washed twice using PBS by centrifugation and stored at −80 °C until 

DNA extraction.

DNA extraction and molecular analysis

Genomic DNA was extracted from the sediment using the FastDNA SPIN Kit for Soil (MP 

Biomedicals, CA, USA), eluted into 100 μl of ultra-pure water, and stored at −20 °C before 

use (Jiang et al. 2005). Each sample was analyzed five times by nested PCR, described 

below, using 2 μL of the extracted DNA per PCR, with one positive control (DNA from 

target pathogens) and two negative controls (reagent-grade water for primary and secondary 

PCR reactions) in each PCR run. The secondary PCR products were examined by 1.5% 

agarose gel electrophoresis, and two positive PCR products per sample at each locus were 

sequenced in both directions by BioSune (Shanghai, China). The nucleotide sequences of 
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each gene obtained were aligned with reference sequences downloaded from GenBank using 

ClustalX (http://www.clustal.org/).

Genotyping and subtyping of Cryptosporidium

A 587-bp fragment of the small-subunit (SSU) rRNA gene was amplified by nested PCR for 

the detection and genotyping of Cryptosporidium spp. (Ryan et al. 2003). Samples positive 

for C. hominis or C. parvum were further analyzed by PCR amplification of an 

approximately 400-bp fragment of the 60 kDa glycoprotein (gp60) gene (Sulaiman et al. 
2005), whereas those positive for C. meleagridis were subtyped by a new PCR assay 

targeting a 900-bp fragment of the gp60 gene (Stensvold et al. 2014).

Genotyping of G. duodenalis

Giardia cysts in samples were detected and genotyped by nested PCR analysis of three 

genetic loci, including a 530-bp fragment of the triosephosphate isomerase (tpi) gene 

(Sulaiman et al. 2003a), a 599-bp fragment of the glutamate dehydrogenase (gdh) gene 

(Caccio et al. 2008), and a 511-bp fragment of the β-giardin gene (Lalle et al. 2005).

Detection and genotyping of E. bieneusi

A published nested PCR assay targeting a 392-bp fragment of the rRNA unit containing the 

entire internal transcribed spacer (ITS) was used for the detection and genotyping of E. 
bieneusi (Sulaiman et al. 2003b). The established nomenclature was used in naming the 

genotypes detected (Santin & Fayer 2011). The neighbor-joining analysis implemented in 

Mega 6.0 (http://www.megasoftware.net/) was used to determine the group of E. bieneusi 
genotypes detected in the study, based on genetic distances from the Kimura two-parameter 

model.

Statistical analysis

Data on pathogen occurrence were analyzed using SPSS 19.0 (http://www-01.ibm.com/

software/analytics/spss/). The paired T test was used to evaluate the effect of PMA, whereas 

the χ2 test and ANOVA (analysis of variance) were used to compare differences in the 

occurrence of parasites and the concentration of Giardia cysts among three WWTPs, 

respectively (α = 0.05). A bivariate correlation analysis was used to assess the correlation 

between numbers of Cryptosporidium oocysts or Giardia cysts in IFA and fecal coliform 

counts.

Nucleotide sequence accession numbers

Unique nucleotide sequences generated in this study were deposited in GenBank under 

accession numbers KR902350 to KR902360.

RESULTS

Occurrence of Cryptosporidium oocysts and Giardia cysts by IFA

By microscopy, Cryptosporidium oocysts were detected in 31 (62%) of the 50 samples at 

concentrations of 0–0.93 oocyst/L. Among the three WWTPs, WWTP2 had a significantly 
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lower Cryptosporidium oocyst occurrence than the other two WWTPs (P = 0.012); oocysts 

were detected in 33% of samples from WWTP2 compared to 81% of samples from WWTP1 

and 75% of samples from WWTP3 (Table 1). In contrast, Giardia cysts were detected in 48 

(96%) samples at concentration of 0–49 cysts/L. There were no significant differences in 

Giardia cyst occurrence (P = 0.109) or concentration (P = 0.059) among the three WWTPs 

(Table 2). As the sampling was done over a 6-month period, no effort was made to evaluate 

possible seasonal differences in the occurrence and concentration of these pathogens.

Occurrence of Cryptosporidium oocysts and Giardia cysts by PCR and PMA-PCR

By PCR analysis of the SSU rRNA gene, 15 of the 50 effluent samples were positive for 

Cryptosporidium spp. compared to 16 of the samples positive for Cryptosporidium by PMA-

PCR (Table 3). Likewise, by PCR analysis, 44, 43, and 42 of the 50 effluent samples were 

positive for Giardia at the tpi, gdh, and β-giardin loci, respectively, compared to 49, 44, and 

46 samples for Giardia by PMA-PCR at these loci, respectively. As most of the positive 

samples were positive by both PCR and PMA-PCR, there were no significant differences in 

pathogen detection rates between PCR and PMA-PCR (Table 3).

Cryptosporidium species/subtypes

Altogether 20 (40%) of the 50 effluent samples were positive for Cryptosporidium spp. by 

PCR or PMA-PCR. Among the three WWTPs, Cryptosporidium spp. were detected in 62% 

of samples from WWTP1, 22% of samples from WWTP2, and 38% of samples from 

WWTP3 (P = 0.055; Table 1). DNA sequencing of PCR products revealed the presence of 

10 Cryptosporidium species or genotypes, including C. muris, C. meleagridis, C. parvum, C. 
hominis, C. canis, C. felis, C. baileyi, C. suis-like, rat genotype I, and rat genotype IV. The 

most common species was C. muris, which was detected in 13 samples. This was followed 

by C. meleagridis, C. parvum, and C. suis-like, being detected in six, three, and three 

samples, respectively. Others were detected in only one or two samples (Table 1). Subtyping 

of C. hominis and C. parvum in the samples was unsuccessful. One of the C. meleagridis 
samples from WWTP2 was identified as the IIIbA22G1R1c subtype (KJ210607).

G. duodenalis genotypes and subtypes

PCR and PMA-PCR analyses of the tpi gene showed that all samples from the three 

WWTPs were positive for G. duodenalis. DNA sequence analysis of the PCR products 

identified the subtype A2 of assemblage A in 49 samples and another related assemblage A 

subtype (KJ888992) in 14 samples. This subtype (KJ888992) has been reported in humans 

(Karim et al. 2015). Moreover, three new subtypes, A2-ESHtpi01 (one SNP from A2), A2-

ESHtpi02 (one SNP from A2), and B-ESHtpi (four SNPs from B) were found in this study.

Analysis of the gdh locus showed that 90% (45/50) of the samples were positive for G. 
duodenalis. Subtype A2 of assemblage A was identified in 45 samples and subtype B-sh01 

(JX994231) of assemblage B in one sample. Two new assemblage B subtypes, B-ESHgdh01 

and B-ESHgdh02, each with two SNPs from the B-sh03 subtype (JX994233), were also 

detected.
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Analysis of the β-giardin locus showed that 92% (46/90) of the samples were positive for G 
duodenalis. Subtypes A2, A3, and A5 were detected in 46,12, and one sample, respectively. 

One new subtype A2-ESHbg (one SNP from A2) of assemblage A was found (Table 2).

Altogether, 44 samples were positive at all three genetic loci by PCR or PMA-PCR. 

Multilocus genotype (MLG) analysis (Feng & Xiao 2011) indicated that AII-1 was the 

dominant type in this study, being detected in all 44 samples (Table 2). The other 

assemblage A subtypes and assemblage B in samples with partial data occurred in a few 

samples mostly together with AII-1.

E. bieneusi genotypes

By PCR analysis of the ITS, 35 (70%) of the 50 samples were positive for E. bieneusi. The 

occurrence rates of E. bieneusi in WWTP1, WWTP2, and WWTP3 were 81%, 78%, and 

50%, respectively (P = 0.104). Eleven genotypes of E. bieneusi were identified in this study, 

including six known ones (D, EbpC, PigEBITS7, Peru11, Peru8, and EbpA) and five new 

ones (ESH-01 to ESH-05). The predominant genotype was D, being detected in 31 samples. 

This was followed by ESH-03 in six samples (Table 4). A neighbor-joining analysis of the 

ITS sequences revealed that all E. bieneusi genotypes found in this study belonged to the 

zoonotic Group 1. The majority of these genotypes were in subgroup 1a, except for EbpC in 

subgroup 1d and ESH-01 and EbpA in subgroup 1e (Figure 1).

Fecal coliform counts and correlation between pathogen and fecal coliform levels

The concentrations of fecal coliforms were 3.36 × 104 ± 3.27 × 104 (mean ± SD) MPN/100 

mL and 2.23 × 104 ± 1.59 × 104 (mean ± SD) MPN/100 mL for WWTP1 and WWTP3 (the 

two plants that use chlorine dioxide for disinfection), respectively. In contrast, the level of 

fecal coliforms in WWTP2 (the plant that uses UV for disinfection) was above the detection 

threshold for only three samples (100, 100, and 310 MPN/100 mL). By fecal coliform 

concentrations, one of the 14 samples from WWTP1, all 11 samples from WWTP2 and two 

of the 12 samples from WWTP3 met the level 1-B or level 2 of the Discharge Standard of 

Pollutants for Municipal WWTP, China (GB18918-2002).

There was a weak correlation between numbers of Cryptosporidium oocysts detected by IFA 

and fecal coliform counts (r = 0.432; P = 0.008). There was no such correlation between 

numbers of Giardia cysts and fecal coliforms (r = 0.234; P = 0.162).

DISCUSSION

Effluents from municipal WWTPs play important roles in the transport of parasites into 

water. Previous studies have demonstrated that the occurrence and concentration of 

Cryptosporidium oocysts and Giardia cysts in surface water near outlets of WWTPs are 

higher than those at other sites (Van Dyke et al. 2012). Moreover, Cryptosporidium oocysts 

and Giardia cysts are environmentally resistant (Fayer & Nerad 1996; Olson et al. 1999), 

thus retain viability and infectivity in the environment for a long period of time. In addition, 

the ingestion of as few as 10 cysts or 30 oocysts can cause giardiasis and cryptosporidiosis 

in humans (Adam 1991; DuPont et al. 1995). As a result, if raw wastewater is not fully 
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treated, the reuse of WWTP effluents for irrigation, recreation, or surface water recharge can 

be a potential public health problem.

In this study, three different techniques were used in the detection of pathogens in WWTP 

effluents, including IFA, PCR, and PMA-PCR. The IFA microscopy implemented in Method 

1623 has the advantage of providing quantitative assessment of the concentrations of 

Cryptosporidium oocysts and Giardia cysts in WWTP effluent samples, but cannot 

differentiate human-pathogenic species or genotypes from animal-specific species or 

genotypes, or viable oocysts or cysts from dead oocysts or cysts (Weintraub 2006). PCR 

along with DNA sequencing of the PCR products, in contrast, allows not only the 

assessment of source and human-infective potential of oocysts and cysts in WWTP effluents 

but also the detection of other pathogens, such as E. bieneusi (Kothavade 2012). However, it 

cannot accurately assess the level of pathogen contamination. PMA-PCR is intended to 

assess the viability of Cryptosporidium oocysts and Giardia cysts, as cross-linking of PMA 

to DNA through the damaged external structure obstructs the amplification of target DNA by 

PCR (Brescia et al. 2009). Thus, only DNA from viable oocysts and cysts is expected to be 

amplified by PMA-PCR. Both PCR and PMA-PCR are likely to be affected by UV 

irradiation, which induces cyclobutylthymine dimer formation and strand breakage in DNA 

(Al-Adhami et al. 2007), although no studies have been conducted thus far to evaluate the 

effect of UV treatment on PCR detection of waterborne pathogens in water samples.

Among the three detection techniques, PCR and IFA were used as the primary techniques in 

the detection of Cryptosporidium spp. and G. duodenalis in WWTP effluents. Some previous 

studies have shown that PCR appears to be more sensitive than IFA in the detection of 

Cryptosporidium oocysts and Giardia cysts in water samples (Mayer & Palmer 1996). 

However, in this study, the IFA-positive rates of Cryptosporidium oocysts are slightly higher 

than PCR-positive rates. Similar results have been reported previously (Robertson et al. 
2006; Lobo et al. 2009; Kitajima et al. 2014). The existence of PCR inhibitors in water 

samples, uneven distribution of oocysts in sample concentrates, UV treatment of wastewater 

in one WWTP, and a smaller proportion of water concentrates (the entire 0.5 mL of 

concentrate for IFA versus 10% DNA from 0.5 mL of concentrate for PCR) analyzed by 

PCR may have contributed to the lower detection rate by PCR. In the case of Giardia spp., 

similar detection rates were obtained by the two approaches, probably because of the much 

higher concentrations of cysts in WWTP effluents.

We attempted to use PMA-PCR in assessing the viability of Cryptosporidium oocysts and 

Giardia cysts in WWTP effluents. However, the effect of the PMA treatment prior to PCR on 

pathogen detection was insignificant in this study. Since the UV disinfection in WWTP2 can 

destroy the internal DNA without affecting the integrity of the oocyst/cyst wall, we expected 

to see similar pathogen detection rates between PCR and PMA-PCR for WWTP2 samples. 

On the other hand, chlorine dioxide kills Cryptosporidium oocysts and Giardia cysts through 

damage to the oocyst and cyst wall and the parasite membranes. As damage in oocysts and 

cysts would allow the incorporation of PMA into DNA, which prevents the amplification of 

target genes by PCR, only potentially viable organisms are expected to be detected by PMA-

PCR. Data from this study suggest that at least some pathogens detected in samples from the 

WWTPs 1 and 3 are potentially viable, as similar Cryptosporidium and Giardia detection 
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rates were obtained between regular PCR and PMA-PCR. The potential viability of oocysts 

and cysts was also supported by the results of the fecal coliform detection, as the chlorine 

dioxide treatment in these two WWTPs has failed in reducing the fecal coliform level to the 

accepted threshold. As quantitative PCR was not used, we do not know the proportion of 

viable Cryptosporidium oocysts and Giardia cysts in WWTP samples. We also cannot 

exclude the possibility of insufficient cross-linking of PMA to pathogen DNA due to the 

high turbidity of sample concentrates.

Ten species or genotypes of Cryptosporidium were detected in WWTP effluents in this 

study, including C. muris, C parvum, C hominis, C meleagridis, C felis, and C. canis, among 

which, C. muris was the most prevalent species. C. parvum and C. hominis are two species 

responsible for most cryptosporidiosis cases in humans and C. meleagridis. C felis, and C. 
canis, traditionally regarded as host-adapted species, have also been found in a number of 

human patients (Ryan et al. 2014). The C. meleagridis subtype IIIbA22G1R1c seen in this 

study has been reported in humans in India (Stensvold et al. 2014). A recent study in healthy 

volunteers indicates that humans are susceptible to C. muris (Chappell et al. 2015). The 

occurrence of human-pathogenic Cryptosporidium spp. in WWTP effluents in this study 

supports recent calls for more stringent treatment of municipal wastewater in China.

The occurrence rate of G. duodenalis in this study was very high. Of the 50 samples 

collected, 48 (96%) were positive by IFA and all positive by PCR analysis of the tpi gene. 

DNA sequence analysis of PCR products demonstrated that most positive samples had 

assemblage A. Results of MLG analysis suggest that almost all belonged to AII-1. Sub-

assemblage AII is a common G. duodenalis pathogen in humans and has been only 

occasionally found in animals (Feng & Xiao 2011). The high concentration of G. duodenalis 
cysts and common occurrence of sub-assemblage AII in WWTP effluents highlight the 

potential of treated wastewater as a source of G. duodenalis contamination in watersheds in 

China.

E. bieneusi was found in more than half of the samples, including six known genotypes, D, 

EbpC, PigEBITS7, Peru11, Peru8, and EbpA. The most prevalent genotype was D, which 

was detected in 31 samples. The known genotypes in this study have been commonly 

reported in human patients (Matos et al. 2012). Five new genotypes were found in this study. 

Among them, ESH-02, ESH-03, ESH-04, and ESH-05 belong to the subgroup 1a, which is 

known to primarily infect humans (Thellier & Breton 2008). ESH-01 is in the subgroup 1e, 

which although commonly found in pigs, has been reported in humans (Leelayoova et al. 
2006). The existence of human-pathogenic E. bieneusi genotypes in WWTP effluents is 

consistent with our findings on Cryptosporidium spp. and G. duodenalis.

In the study areas, WWTP effluents discharge into agricultural lands, recreational parks, and 

the coast, thus microbial levels above allowable thresholds can raise public health concerns. 

Previous studies have also demonstrated the potential of pathogen contaminations in 

recreational water by WWTP effluents (Castro-Hermida et al. 2008; Betancourt et al. 2014). 

Moreover, Cryptosporidium spp. and G. duodenalis in WWTP effluents may contaminate 

shellfish or fresh produce, causing foodborne outbreaks of diarrheal illnesses (Thurston-

Enriquez et al. 2002; Willis et al. 2013). A previous report on WWTP effluents for irrigation 
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also described the occurrence of both Cryptosporidium oocysts and Giardia cysts (Lubello et 
al. 2004).

In the Discharge Standard of Pollutants for Municipal WWTP, China (GB18918-2002), the 

fecal coliform level is the only microbiological indicator, and WWTP effluents can be 

discharged into surface water or the ocean when they have met the standard. The three 

WWTPs studied use the Level 1-B or Level 2 standard, which has the upper limit of the 

fecal coliform count as 1,000 MPN/100 mL. Fewer than half of the effluent samples in 

WWTP1 or WWTP3 met the standard in this small-scale study, and both of them use 

chlorine dioxide as the disinfectant for secondary effluents. Previously in China, chlorine 

dioxide was shown to be effective in controlling fecal coliform levels in wastewater at the 

dosage of 2.8 ppm and contact time of 13 min (Zhang et al. 2009). The designed dosage was 

5 ppm for WWTP1 and the operational dosage was 8 ppm in WWTP3 during the study, with 

a designed contact time of 30 min for both WWTPs. In controlled settings, chlorine dioxide 

treatment at 10 ppm can lead to the loss of excystation ability of Giardia cysts within 1 min 

at room temperature and treatment at 1.3 ppm for 1 hour can results in 90% inactivation of 

Cryptosporidium oocysts (Korich et al. 1990; Winiecka-Krusnell & Linder 1998). However, 

the effectiveness of chlorine dioxide in inactivating fecal coliforms in wastewater is known 

to be affected significantly by the level of organic matter, and in Italy, its use as a 

disinfectant is not sufficient to obtain wastewater that meets the national quality standard for 

irrigation (De Luca et al. 2008). More studies are needed to evaluate the effectiveness of 

chlorine dioxide in reducing fecal coliforms and pathogen levels in wastewater effluents.

In contrast to the poor quality of effluents in WWTP1 and WWTP3, all effluent samples 

from WWTP2, which uses UV as the disinfectant for secondary effluents, had fecal coliform 

concentrations below the acceptable level for discharge. Previously, UV was shown to be 

much more effective in reducing fecal coliform levels in wastewater than chlorine dioxide 

(Carrasco & Turner 2006). A much lower occurrence of Cryptosporidium oocysts was also 

seen in WWTP2, although we did not see any major differences among the three WWTPs in 

the occurrence of Giardia cysts. The occurrence of Cryptosporidium oocysts and Giardia 
cysts in surface water correlated with fecal coliform or E. coli counts in some studies 

(LeChevallier et al. 1991; Yang et al. 2008; Xiao et al. 2013) but not in others (Wu et al. 
2011; Pachepsky et al. 2015).

CONCLUSION

We have demonstrated that human pathogens Cryptosporidium spp., G duodenalis, and E. 
bieneusi are present at significant concentrations in municipal WWTP effluents in China. 

The chlorine dioxide disinfection employed in some of the WWTPs is not effective in 

inactivating the residual pathogens and fecal coliforms. These findings raise concerns 

regarding the implementation of the current Chinese regulation on WWTP effluents. More 

studies in other settings are needed to determine whether there is a need for the inclusion of 

major waterborne pathogens in the national standard of WWTP effluents in China and other 

countries.
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Figure 1. 
Phylogenetic relationship of Enterocytozoon bieneusi genotypes as indicated by a neighbor-

joining analysis of ITS sequences from this study and reference sequences from GenBank, 

based on genetic distances calculated with the Kimura two-parameter model. Bootstrap 

values greater than 50% from 1,000 replicate analyses are shown on nodes of the tree. 

Genotypes underlined are those identified in this study.
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Table 4

Occurrence and distribution of Enterocytozoon bieneusi genotypes in WWTP effluents in Shanghai, China

Sampling site No. of samples No. of positive samples (%) Genotypes (No. of samples)

WWTP1 16 13 (81) D (11), ESH-03 (6), EbpC (2)

WWTP2 18 14 (78) D (13), PigEBITS7 (2), Peru 11 (1), ESH-04 (2)

WWTP3 16 8 (50) D (7), Peru 8 (1), EbpA (1), ESH-02(1), ESH-05 (1), ESH-01 (1)
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